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On the basis of the Bogoliubov–de Gennes theory we study the transformation of the quasiparticle spectrum
in the mixed state of a mesoscopic superconductor, governed by an external magnetic field. We analyze the
low-energy part of the excitation spectrum and investigate the field dependent behavior of anomalous spectral
branches crossing the Fermi level. Generalizing the Caroli–de Gennes–Matricon approach, we present an
analytical solution describing the anomalous branches in a vortex with an arbitrary winding number. We also
study the spectrum transformation caused by the splitting of a multiquantum vortex into a set of well separated
vortices focusing mainly on a generic example of a two-vortex system. For vortices positioned rather close to
the sample surface we investigate the effect of the quasiparticle reflection at the boundary on the spectrum and
the density of states at the Fermi level. Considering an arbitrary surface curvature, we study the disappearance
of an anomalous spectral branch for a vortex leaving the sample. The changes in the vortex configuration and
resulting transformation of the anomalous branches are shown to affect strongly the density of states and the
heat conductance along the magnetic-field direction.
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I. INTRODUCTION

Modern technology development provides a unique pos-
sibility to study exotic vortex states in mesoscopic supercon-
ducting samples of the size of several coherence lengths.1–3

Tuning the external applied magnetic field one can switch
between rich varieties of energetically favorable or meta-
stable vortex configurations, which cannot be realized in
bulk systems. Of particular interest is a possibility to obtain
multiquanta �giant� vortex states with winding numbers
larger than unity for certain intervals of external magnetic
field �see, e.g., Ref. 2�. The merging of individual vortices
into a multiquantum one occurs under the influence of
screening currents, which push the vortices to the sample
center. Note that alternatively the stable multiquanta vortices
can appear even in a bulk superconductor because of the
pinning on columnar defects with radii of the order of the
coherence length.4 Experimentally the vortex configurations
in mesoscopic systems and the phase transitions between
them can be studied, e.g., by Hall-probe measurements of the
branching of the magnetization curve3 or by observation of
the vortex entry into the sample using the point-contact
techniques.5

Changing the number and arrangement of the flux lines
we can tune the low-energy excitation spectrum, which is
known to be responsible for low-temperature thermodynamic
and transport properties of the sample. The mechanism of
such changes in the subgap quasiparticle spectrum is associ-
ated with the modification of the anomalous energy branches
crossing the Fermi level. For well separated vortices posi-
tioned at distances much larger than the core radius, the be-
havior of the anomalous branches can be described by the
Caroli–de Gennes–Matricon �CdGM� theory.6 For each indi-
vidual vortex the energy ���� of a subgap state varies from
−�0 to +�0 as one changes the angular momentum � defined
with respect to the vortex axis. At small energies �����0 the
spectrum is a linear function of �: �����−��, where �

��0 / �k��� ��0 is the superconducting gap value far from
the vortex axis, k�=�kF

2 −kz
2 �kF is the Fermi momentum and

kz is the momentum projection on the vortex axis� �
=�VF /�0 is the coherence length �VF is the Fermi velocity��
and � is half an odd integer.

With the decrease in the intervortex distance the quasipar-
ticle tunneling between the vortex cores comes into play re-
sulting in the modification of the anomalous branches.7 Fi-
nally, when the vortex cores merge one obtains a
multiquantum vortex with a certain winding number M. The
number of anomalous branches per spin projection8 is con-
served during this process of crossover from M individual
flux lines to the M-quantized giant vortex and equals the
vorticity M. Previously, the behavior of the anomalous
branches in a multiquantum vortex has been investigated
numerically9 and analytically for a steplike model profile of
the order parameter in the core.10 For vortices with an even
vorticity all the anomalous branches cross the Fermi level at
nonzero impact parameters b=−� /k�;

���� 	 − �� � � j��0/�k��� , �1�

where j=1. . .M /2 and �M/2	k��. For a vortex with an odd
winding number there appears a branch crossing the Fermi
level at zero impact parameter.

The wave functions of the subgap states are localized in-
side the vortex core because of the Andreev reflection of
quasiparticles at the core boundary. Any additional normal
scattering process should modify the behavior of the anoma-
lous spectral branch. Such modification can be caused even
by atomic size impurities, as it was predicted by Larkin and
Ovchinnikov in Ref. 11. For a vortex approaching a flat
sample boundary the distortion of the local density-of-states
�DOS� profile has been analyzed in Ref. 12 numerically on
the basis of the Eilenberger theory both for s-wave and
d-wave pairing symmetries. Certainly the role of normal
scattering at the boundaries can be of particular importance
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for vortices trapped in mesoscopic samples. For a single vor-
tex placed in a superconducting cylinder an appropriate spec-
trum transformation was studied in Refs. 13 and 14.

Experimentally the behavior of the anomalous branches
can be probed, e.g., by the scanning tunneling microscopy
�STM� or by the heat transport measurements. The modern
STM technique is a unique tool for the study of the local
DOS profiles and, thus, could provide us the information
about the number and configuration of the spectral branches
crossing the Fermi level. An important advantage of the heat
conductance measurements along the vortex lines is associ-
ated with the fact that probing the number and transparency
of quasiparticle transport channels this method appears to be
sensitive also to the kz dispersion of the spectrum and, in
particular, to the group velocity of quasiparticle modes
propagating along the vortex cores.14,15 Indeed, it is the small
group velocity of CdGM states that is responsible for
a strong suppression of the heat conductance 	v
	T2kF� / ���0� along a singly quantized vortex core as com-
pared to the Sharvin conductance 	Sh	T�kF��2 /� of a
normal-metal wire of the radius � at certain temperature T:

	v

	Sh
	

1

kF�

T

�0
� 1. �2�

Within the Landauer approach such suppression of the vortex
heat conductance can be understood as a consequence of a
strong reduction in the effective number of conducting
modes Nv=	v /	0, where 	0=
T / �3�� is the universal heat
conductance per conducting mode in a normal metal. Taking
the interlevel spacing �0��0 / �kF�� for the anomalous
branch at kz=0, one obtains Nv	T /�0—which agrees with
the above estimation �Eq. �2��. Both the intervortex quasipar-
ticle tunneling and the normal scattering at the sample
boundary are expected to affect the effective number of con-
ducting modes resulting in the dependence of the heat trans-
port on the vortex configuration in a mesoscopic supercon-
ductor. The increase in the heat conductance stimulated by
the boundary effects was demonstrated in Ref. 14 for a single
vortex state in a cylinder.

It is the goal of the present paper to study both the trans-
formation of the anomalous branches and distinctive features
of the DOS and heat transport in different multivortex con-
figurations in mesoscopic samples. We include in our consid-
eration both the spectrum transformation caused by the giant
vortex splitting and the process of an anomalous branch for-
mation �disappearance�, which occurs when a vortex enters
�exits� the sample. In the present study we address only the
case of homogeneous mesoscopic superconductors without
any defects or pinning centers.

The paper is organized as follows: To elucidate our main
results we start from a qualitative discussion of the behavior
of the anomalous branches in a mesoscopic superconductor
�see Sec. II�. In Sec. III we introduce the basic equations
used for the spectrum calculation. In Sec. IV we consider an
analytical solution describing the spectrum of a multiquan-
tum vortex line. In Sec. V we study a generic example of the
spectrum transformation caused by the decay of giant vorti-
ces, i.e., the splitting of a doubly quantized vortex into two
individual singly quantized vortices. The influence of the

normal reflection at the sample surface on the quasiparticle
spectrum for a vortex positioned close to the boundary is
analyzed in Sec. VI. In Secs. VII and VIII we calculate the
density of states and the thermal conductance, respectively,
using the quasiparticle spectra found in the previous sections.
We summarize our results in Sec. IX. Some of the details of
our calculations are given in appendices.

II. TRANSFORMATION OF ANOMALOUS SPECTRAL
BRANCHES: QUALITATIVE PHYSICAL PICTURE

As we discussed in Sec. I there are two basic mechanisms
responsible for the transformation of anomalous branches in
a multivortex configuration: �i� the tunneling of quasiparti-
cles between the vortex cores and �ii� the quasiparticle scat-
tering at the sample boundaries, which comes into play when
the vortices approach the superconductor surface. To clarify
the key physical consequences of these mechanisms hereaf-
ter, we consider two model problems: �i� electronic structure
of a multivortex system positioned rather far from the bound-
ary and �ii� electronic structure of an individual vortex ap-
proaching the sample surface.

A. Effect of intervortex quasiparticle tunneling

Let us start with a qualitative analysis of the behavior of
the anomalous branches and consider a set of vortex lines
parallel to the z axis. It is the case of intermediate values of
magnetic field when vortices are quite far from the boundary
but do not merge into a multiquantum vortex. In the �xy�
plane the vortex centers defined as points of the order-
parameter phase singularities �and hence as zeros of the su-
perconducting order parameter� are positioned at certain co-
ordinates ri.

The system is homogeneous in the z direction and, as a
result, the momentum kz appears to be conserved. The two-
dimensional quantum-mechanical problem in the �xy� plane
can be strongly simplified provided the wavelength k�

−1 is
much less than the superconducting coherence length �.
Thus, following standard quasiclassical procedure �see Sec.
III for details� one can describe the quantum mechanics of
quasiparticles using the geometrical optics picture. An im-
portant distinctive feature of this picture in superconductors
is that all the classical trajectories can be approximately con-
sidered as straight lines. The bending of these straight trajec-
tories is negligible because of a small momentum change
�k	1 /� during the process of quasiparticle scattering at the
inhomogeneous superconducting gap profile, i.e., during the
Andreev reflection. We also can neglect the trajectory bend-
ing caused by magnetic field, since we assume the cyclotron
radius rH	VF /�H	kF�2�Hc2 /H� to exceed all the relevant
length scales of our problem. Here �H= �e�H / �mc� is the cy-
clotron frequency, m is the electron effective mass, and Hc2
is the upper critical field.

For quasiparticles propagating along the classical trajec-
tories parallel to k�=k��cos �p , sin �p�, we introduce the an-
gular momenta �= �r ,k�� ·z0=k�r sin��p−�� and �̃i=�
− �ri ,k�� ·z0 defined with respect to the z axis passing
through the origin and with respect to the ith vortex axis
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passing through the point ri, correspondingly ��r ,� ,z� is the
cylindrical coordinate system�. Neglecting the quasiparticle
tunneling between the vortex cores and the normal scattering
at the sample boundary, we get degenerate CdGM energy
branches: �i=−��̃i for �����0. For a fixed energy � we can
define a set of crossing quasiclassical orbits in the plane
�� ,�p�: �i��p�=−� /�+ �ri ,k�� ·z0.

The quasiclassical orbit in the �� ,�p� plane for a single
Abrikosov vortex is shown in Fig. 1�b�. Each point at this
orbit corresponds to a straight trajectory passing through the
vortex core �Fig. 1�a��. Precession of the quasiclassical tra-
jectory is described by the Hamilton equation: ���p /�t
=�� /��, which provides us the precession frequency 

=−� /�. This precession is a result of the small deviation
from the exact Andreev backscattering of quasiparticles in
the vortex core. In Fig. 1�b� the direction of the trajectory
precession is shown by arrows. The discrete spectrum of
subgap quasiparticle states can be found using the Bohr-
Sommerfeld rule. In the case of several vortices we have
several crossing quasiclassical orbits in the �� ,�p� plane.
These orbits are shown by dash lines in Fig. 2�a� for a par-
ticular case of two vortices with r1= �−a /2,0� and r2
= �a /2,0�. Each crossing point of quasiclassical orbits �i��p�
and � j��p� correspond to the trajectories passing through the
cores of ith and jth vortices. It is natural to expect that the

degeneracy at these points will be removed if we take ac-
count of a finite probability of quasiparticle tunneling be-
tween the cores. Let us consider the vicinity of the degen-
eracy point, e.g., �p=0 �see Fig. 2�a��. The trajectory
characterized by the angle ��p��� /a passes through both
vortex cores, and therefore the wave function along such
trajectories can be found as a superposition of two states
localized at different vortices and having close energies:
�v1=−���− �k�a /2�sin �p� and �v2=−���+ �k�a /2�sin �p�.
The transformation of the quasiclassical spectrum occurring
due to the overlapping of the corresponding wave functions
can be described using a standard quantum-mechanical ap-
proach describing a two-level system—16 which yields the
secular equation,

�� − �v1��� − �v2� = ����2, �3�

and results to the splitting of isoenergetic lines near the de-
generacy point ��p=0 for our example�:

� = − �� � ��2�k�a/2�2�p
2 + ����2. �4�

The tunneling of quasiparticles between vortex cores is de-
termined by the exponentially small overlapping of wave
functions localized near the cores and results in the splitting
of energy levels: ��	�0 exp�−kFaij / �k����, where aij = �ri
−r j� is the distance between vortex lines and kFaij /k� is the
distance between vortex centers along the trajectory. The es-
timate for the splitting ����� /� of isoenergetic lines in the
�� ,�p� plane reads �see Eq. �4��:

���aij� 	 k�� exp
−
kFaij

k��
� . �5�

As a result, we get the orbits �i
���p� with a qualitatively new

behavior �solid lines in Fig. 2�a��: each of these orbits con-
sists of parts corresponding to the classical quasiparticle tra-
jectories passing through the cores of different vortices.

The tunneling between the cores of the different vortices
becomes significant when the energy splitting �� is compa-
rable to the interlevel spacing �0, i.e., when ���1 in Eq.
�5�. According to the above condition on ���aij� the tunnel-
ing is most efficient for k�=kF and aij �ac, where ac
�� ln�kF�� is a critical intervortex distance. Using the per-
colation theory language, we can consider the vortices to be
bonded if aij �ac, and we can define a cluster in a flux line
system as a set of M vortices bonded either directly or via
other vortices. Certainly in mesoscopic superconductors the
cluster dimensions Lv cannot exceed the sample size. The
cluster is characterized by a set of hybridized quasiparticle
states: with a change in the k� direction the wave function
experiences a number of subsequent transitions between the
cores of neighboring vortices. Taking, e.g., the upper quasi-
classical orbit in Fig. 2�a�, we obtain the wave function con-
centrated near the cores of the right and left vortices for the
angular intervals 0��p�
 and 
��p�2
, respectively.
Further decrease in the intervortex distance results in the
increase in the tunneling probability and, thus, the increase in
���aij�. Finally, for aij→0 we get a set of M lines �
=const parallel to the �p axis, i.e., M anomalous branches
crossing zero energy at angular independent impact param-
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FIG. 1. �Color online� Schematic plot of trajectory precession
around vortex line �a� in real space and corresponding quasiclassi-
cal orbit for �=0 �b� in the �� ,�p� plane. Vortex core is shown by
gray circle.
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FIG. 2. �Color online� Schematic plots of quasiclassical orbits
for �=0 in the �� ,�p� plane �solid lines� for �a� two vortices with
intervortex distance a and �b� vortex near the flat surface �a /2 is the
distance between vortex and surface�. The orbits for two noninter-
acting vortices are shown by dashed lines.
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eters and corresponding to the M-quantum vortex. Certainly
this limit can be realized only in mesoscopic samples.

Within the quasiclassical approach one can estimate the
intervortex tunneling efficiency using the Landau-Zener tran-
sition theory. Let us consider the vicinity of the degeneracy
point, e.g., �p=0 �see Fig. 2�a��. The tunneling probability of
transition from one quasiclassical orbit to another is given by
the expression,16

W = exp�− 4 Im

0

i�p
�

���p�d�p� , �6�

where �p
� =2�� / ��k�a� and ���p� should be taken from Eq.

�4� with lower sign. Finally, we obtain the following estimate
for the tunneling probability:

W = exp�− 2
���/���2� , �7�

where ��=�k�a is the quantum-mechanical uncertainty of
the angular momentum. Therefore, we can neglect the tun-
neling between quasiclassical orbits while �����.

Following Ref. 17 one can obtain the discrete energy lev-
els by applying the Bohr-Sommerfeld quantization rule for
canonically conjugate variables � and �p:



0

2
n�

���p�d�p = 2
�n + �� , �8�

where n and n� are integers, 2
n� is the period of the ���p�
function �1�n��M�, and � is of the order unity. The period
of ���p� can be larger than 2
�n��1� if the Landau-Zener
transitions between quasiclassical orbits are not negligible.
Depending on the ratio �� /�� one should apply this quan-
tization rule either to the orbits �i��p� or to the orbits �i

���p�.
In the momentum region,

kF
�1 − �min�aij�/ac�2 � �kz� � kF, �9�

we can neglect the splitting of isoenergetic lines �������.
For this region, Equation �8� written for the orbits �i��p�
gives us the CdGM spectrum with a minigap �0 /2=��kz
=0� /2. For min�aij��ac the CdGM expression holds for the
entire momentum range. For vortices forming a cluster the
quasiparticle states bonded by intervortex tunneling appear
in a finite momentum interval �kz��kz

�, where

kz
� = kF

�1 − �min�aij�/ac�2. �10�

In this limit the quasiparticle tunneling between the cores
results in the qualitative modification of spectrum, which can
be obtained by substituting �i

���p� into Eq. �8�:

�ni�kz� �
�0

�
�n + �

k�

+ bi�r1, . . . rM�� , �11�

where i=1. . .M. The spectrum Eq. �11� is similar to the one
of a multiquanta vortex,8–10 which recovers in the limit aij
→0 when �bi���. The multivortex cluster geometry and its
size Lv determine the effective impact parameters
bi�r1 , . . .rM�, which vary in the range −Lv�bi�Lv. Taking a
two-vortex �three-vortex� cluster with ��a�ac as an ex-
ample, we get b1,2	 �a �b1,3	 �a , b2=0�. Contrary to the
CdGM case the spectrum branches �Eq. �11�� can cross the

Fermi level as functions of kz as we decrease the intervortex
distance a and minigap is suppressed. The DOS consists of
M sets of van Hove singularities corresponding to the ex-
trema of �ni�kz� branches. The energy interval between the
peaks belonging to each set is �0. For a fixed energy the
DOS as a function of a exhibits oscillations with the period
of the order of the atomic length scale. Experimentally the
intervortex distance can be controlled by a varying magnetic
field. For typical values a	��0 /H we get the following field
scale of DOS oscillations: �H /H	���H /�F, where �F is the
Fermi energy. The oscillatory behavior should affect both
thermodynamic and transport properties at low temperatures
although, in real experimental conditions, the DOS peak
structure is certainly smeared due to the various mechanisms
of level broadening, e.g., finite temperature, fluctuations in
vortex positions, impurity scattering effects, etc. It should be
noted that for typical values kF�=102–103 the critical dis-
tance ac /�	4–6 exceeds the core radius and the spectrum
transformation starts at the fields H	�0 /ac

2

	Hc2�ln�kF���−2 when the vortices are indeed well sepa-
rated.

B. Effect of normal reflection of quasiparticles
at the boundary

The above discussion of the behavior of anomalous
branches assumed a negligible role of the normal scattering
of quasiparticles at the sample boundary. Such assumption is
certainly not valid when the intervortex distance becomes so
large that some of the individual vortices approach the
sample boundary and their spectrum is determined by the
interplay of Andreev reflection and normal scattering at the
boundary. For rather small samples this interplay can influ-
ence the spectrum even for a vortex positioned at the sample
center.13,14

In order to focus on the role of the boundary effects we
consider a model situation when the intervortex quasiparticle
tunneling can be neglected �i.e., aij �ac� because of the
rather large cluster size. Thus, we can study the spectrum
modification for a single vortex approaching the boundary
characterized by a certain curvature in the plane perpendicu-
lar to the vortex axis �see Fig. 3�. For the sake of simplicity
we restrict ourselves to the case of a smooth and specularly
reflecting surface. Obviously the quasiclassical spectrum
should be disturbed most strongly for trajectories, which re-
turn back to the vortex core after the normal reflection at the
boundary. These trajectories experience the reflection from a
rather narrow surface region near the point positioned at the
surface at a minimal distance d from the vortex center. In this
region we may consider the surface profile as a parabolic
cylinder with a certain focal distance F. Introducing a polar
coordinate system �r ,�� with the origin in the vortex center,
one obtains the following equation describing this parabolic
cylinder at small � angles: r���=d�1+ �1 /2+d / �4F���2�.
Note that we should put d /F�−2 so that the distance d is
indeed the minimal distance to the surface. As it is shown in
Fig. 3 the vortex center is positioned at the optical axis of the
parabolic mirror. The trajectories experiencing normal reflec-
tion and passing twice through the core can be considered
within the paraxial approximation.
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In this case the scattering rules for trajectories reflecting
from the surface can be obtained by employing an analogy
with a textbook picture describing the system of rays and
images in geometrical optics. For a particular case of a con-
cave parabolic mirror �F�0� the system of rays is schemati-
cally shown in Figs. 3�a� and 3�b�. For the object �white solid
arrow� situated at the distance d from the mirror the image
�white dashed arrow� is formed by the reflected rays at the
coordinate f =−d /h, where h=−�1+d /F�. The type of image
is determined by the sign of h: if h�0 the image is real, i.e.,
it has the coordinate f �0 and is situated at the same side of
the mirror relative to the object �see Fig. 3�a��, otherwise the
image is virtual with f �0 and situated at the other side of
the mirror �see Fig. 3�b��. Using these well-known results the
parameters of reflected trajectories can be derived from the
simple trigonometry.

Let us consider the trajectory that makes a small angle
��p��1 with the x axis and has a small impact parameter

�b��d. Then, the reflected trajectory has the angle �̃p=


+h�p and its impact parameter is b̃=hb. The impact param-
eters of incident and reflected trajectories are defined relative
to the point �=0 and r=d positioned at the surface at the
minimum distance to the vortex center. This point coincides
with the coordinate system origin in Figs. 3�a� and 3�b�.

In the �� ,�p� plane one can define isoenergetic lines cor-
responding to the incident and reflected trajectories. The in-
tersection of these lines occurring for ��p��1 corresponds to
the situation when both the incident and reflected trajectories
pass through the vortex core. The degeneracy at the intersec-
tion point should be removed by the splitting of isoenergetic
lines due to the interaction of vortex core states. One can
obtain two qualitatively different regimes of splitting, deter-
mined by the ratio between the focal distance F of the para-
bolic mirror and the distance from the vortex to the surface
d, i.e., by the sign of h. The splitting corresponds to the
continuous transition from one isoenergetic line to another.
The velocity of motion along isoenergetic lines is determined
by the angular velocities of trajectory precession, given by


=��p /�t and 
̃=��̃p /�t=h
 for the incident and reflected

trajectories, correspondingly. Therefore, if 
 and 
̃ have the

same signs �h�0�, then the directions of precession of the
incident and reflected trajectories coincide. In this case, the
orbit transformation is analogous to the one that have been
obtained for the pair of interacting vortices �Figs. 2�a� and
3�c��. Otherwise, if h�0, the incident and reflected trajecto-
ries precess in different directions, therefore the splitting oc-
curs as shown in Figs. 2�b� and 3�d� analogously to the trans-
formation of isoenergetic lines, which can be obtained for the
interacting vortex and antivortex.

To study the spectrum transformation, let us consider in
detail the simplest configuration: the vortex line is situated at
the point �−a /2,0� near the flat boundary of superconductor,
occupying the half space x�0. If we neglect the normal
reflection of quasiparticles at the boundary, the isoenergetic
line in the �� ,�p� space is given by �v��p�=−� /�
− �k�a /2�sin �p �shown for the particular case �=0 by the
dash line in Fig. 2�b��. The flat boundary is characterized by
the infinite focal distance: F=�; therefore h=−1. We obtain
the mapping of incident and reflected trajectories according

to the following rule: b̃=−b and �̃p=
−�p. Then, we obtain
another isoenergetic line: �av��p�=−�v�
−�p�=� /�
+ �k�a /2�sin �p, which corresponds to the reflected trajecto-
ries and is shown in Fig. 2�b� by another dashed curve. Note
that the isoenergetic line �av��p� �with the opposite direction
of trajectory precession� coincides with the isoenergetic line
corresponding to an antivortex placed at the point �0,a /2�
outside the superconductor. It means that the spectrum of the
vortex near the flat surface can be obtained considering the
spectrum of the vortex-antivortex system. Indeed, the pair
potential of the vortex-antivortex system is invariant under
the reflection at the x=0 plane: ��x ,y�=��−x ,y�, yielding

the symmetry of the quasiparticle wave function: �̂�x ,y�
= ��̂�−x ,y�. The odd wave functions obey the boundary

condition �̂�0,y�=0 while the even wave functions obey the

boundary conditions ��̂�0,y� /�x=0. The energy levels cor-
responding to the even wave functions should be omitted in
order to obtain the spectrum of the vortex near the surface.
The isoenergetic lines �v,av��p�= � �� /�+ �k�a /2�sin �p� in-
tersect at certain points, e.g., at �p=
n for �=0, where n is
the integer. The degeneracy at these points is removed by the
splitting of isoenergetic lines, shown in Fig. 2�b� by the solid
lines. Considering the interaction of the two quantum states
with close energies �v=−���+ �k�a /2�sin �p� and �av
=���− �k�a /2�sin �p�, we obtain again the secular Eq. �3�
with �v1=�v and �v2=�av. Therefore, the quasiclassical orbits
near the degeneracy point �p=0 are given in this case by the
following expression:

� = � �����2 + ����2 − ��k�a/2��p. �12�

The classically forbidden angular domain at �=0 has the
width ��p=4�� / ��k�a�. One can assume that the appear-
ance of such classically forbidden domain explains the deep
structure in the local DOS profile observed numerically in
Ref. 12 for a vortex near the flat boundary of an s-wave
superconductor. As we show below, the classically forbidden
angular domain results in the suppression of the overall DOS
and we propose that this mechanism should be responsible

FIG. 3. The geometrical optics analogy for the reflection of
quasiclassical trajectories at the concave �F�0� parabolic boundary
�left panel� and the corresponding modification of the isoenergetic
lines �right panel� for d�−F �a� and �c�; and for d�−F �b� and �d�.
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for the anomalous spectrum branch disappearance when the
vortex exits the sample.

To estimate the tunneling probability between the quasi-
classical orbits, we again apply the theory of Landau-Zener
transitions. The Landau-Zener tunneling probability is ex-
pressed as follows:

W = exp�− 4 Im

0

i��

�p���d�� , �13�

where ��=�� /� and �p��� should be taken from Eq. �12�
with the upper sign. Finally, we obtain the tunneling prob-
ability as W	exp�−2
���p /��p�2�, where ��p	�k�a�−1/2

is the quantum-mechanical uncertainty of the trajectory ori-
entation angle. Thus, we can neglect Landau-Zener effects
while ��p���p—i.e., for a�ac, where ac	� ln�k��� is the
critical distance, appears to be the same as for a two-vortex
system.

III. ANDREEV EQUATIONS

Our further consideration is based on the Bogoliubov–de
Gennes �BdG� equations for particle �u� and hole-like �v�
parts of the wave function, which have the following form:

−
�2

2m
��2 + kF

2�u + ��r�v = �u ,

�2

2m
��2 + kF

2�v + ���r�u = �v . �14�

Here ��r� is the gap function and r= �x ,y� is a radius vector
in the plane perpendicular to the magnetic-field direction. We
assume the system to be homogeneous along the z axis, thus,
the kz projection of the momentum is conserved and the
wave function takes the form:

�u,v� = eikzz�̂�r� .

Then, the two-component wave function �̂ in the momen-
tum representation can be written as follows:

�̂�r� =
1

�2
��2
 

−�

�

eipr/��̂pd2p . �15�

Let us introduce the polar coordinate system in momentum
space p= p�cos �p , sin �p�= pp0. Then, the coordinate opera-
tor can be written as follows:

r̂ = i�
�

�p
= i�
p0

�

�p
+

i

p
�z0,p0��̂� ,

where operator �̂ of z projection of angular momentum is
given by the expression:

�̂ =
1

�
�r,p�z0 = − i

�

��p
. �16�

Next, we assume that the quasiparticle wave function can be
viewed as a wave packet with momenta absolute values close
to �k�. This assumption is valid with very good accuracy in

most superconductors since the characteristic length scale of
envelopes of quasiparticle waves is determined by the super-
conducting coherence length �, which is typically much
larger than the quasiparticle wavelength �kF��1�. Therefore,
one can put p=�k�+q ��q���k�� and obtain:

r̂ = i�p0
�

�q
+

i

2k�
��z0,p0�,

�

��p
� ,

where �. . .� is an anticommutator. Of course, such approxi-
mation is broken for a very small portion of quasiparticles,
which propagate very close to the vortex axis �2
 / �k���
�1�. Let us now introduce a Fourier transformation:

�̂p =
1

k�



−�

+�

�̂�s,�p�e−iqs/�ds . �17�

The variable s is a coordinate along a quasiclassical trajec-
tory, which is a straight line along the direction of the qua-
siparticle momentum. The trajectory orientation angle is
given by the �p value. The wave function in the real space
can be found from Eqs. �15� and �17�:

�̂�r,�� = 

0

2


eik�r cos��−�p��̂�r cos�� − �p�,�p�
d�p

2

,

�18�

where �r ,� ,z� is a cylindrical coordinate system. The expres-
sion for coordinate operator in �s ,�p� representation reads:

r̂ = sp0 +
i

2k�
��z0,p0�,

�

��p
� .

Then, BdG Eq. �14� in �s ,�p� representation takes the form

Ĥ�̂�s ,�p�=��̂�s ,�p� with the Hamiltonian given by

Ĥ = − i�̂z
�2k�

m

�

�s
+ � 0 ��r̂�

���r̂� 0
� , �19�

where �̂x, �̂y, and �̂z are the Pauli matrices.
Note that the gap function operator ��r̂� in Eq. �19� con-

tains a differential operator � /��p, therefore the above qua-
siclassical equations are still rather complicated partial dif-
ferential equations. A further simplification can be obtained
considering eikonal approximation for the angular depen-
dence of wave function:

�̂�s,�p� = eiSe��p�ĝ�s,�p� ,

where

−
1

k�

�Se

��p
= b��p� ,

is an impact parameter of a quasiclassical trajectory. Assum-
ing that the angular dependence of ĝ�s ,�p� is rather slow, one
can neglect its angular derivatives in Eq. �19�. The resulting
Andreev equations characterizing the behavior of the wave
function along a trajectory with a certain orientational angle
�p and an impact parameter b read:
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− i�̂z
�2k�

m

� ĝ

�s
+ �̂x Re ��x,y�ĝ − �̂y Im ��x,y�ĝ = �ĝ ,

�20�

where

x = s cos �p − b sin �p,

y = s sin �p + b cos �p. �21�

Note that the Andreev Eq. �20� can be obtained directly from
the initial BdG Eq. �14� if one applies the coordinate system
transformation Eq. �21� and neglects the second-order de-
rivatives of the wave function.

IV. QUASIPARTICLE SPECTRUM OF A
MULTIQUANTUM VORTEX

We start our quantitative analysis of quasiparticle spectra
with the case of a multiquantum vortex with vorticity M. In
this section we neglect the effect of normal quasiparticle
scattering at the sample boundary and focus on the peculiari-
ties of the spectrum depending on the vorticity value. We
take the gap profile in the form:

� = DM�r�eiM�. �22�

In s ,�p variables one obtains:

� = DM��s2 + b2�eiM�p
 s + ib
�s2 + b2�M

. �23�

Due to the cylindrical symmetry, the �p dependence of the
function ĝ can be excluded using the gauge transformation,

ĝ = exp�iM�̂z�p/2� f̂ , �24�

and quasiclassical Eq. �20� takes the form,

− i�̂z
�2k�

m

� f̂

�s
+ �̂xGRf̂ − �̂yGIf̂ = � f̂ . �25�

Here we introduce the functions,

GR = DM��s2 + b2�Re�
 s + ib
�s2 + b2�M� ,

GI = DM��s2 + b2�Im�
 s + ib
�s2 + b2�M� .

To apply the method analogous to the one used in Ref. 8 for
a singly quantized vortex, we note that the exact solutions of
the above equations corresponding to �=0 can be found in
case GI�0:

f̂� = �1, � i�exp
�
m

�2k�



0

s

GRds� . �26�

Provided GR is an odd function of s, which tends to a certain
nonzero value for �s�→�, one of these solutions appears to
decay both at negative and positive s and, thus, we get a

localized wave function corresponding to a midgap bound
state. Using this localized solution as a zero-order approxi-
mation for the wave function, the spectrum can be found
within the first-order perturbation theory assuming that ���
��0.

For an arbitrary value of vorticity the function GR is not
necessary odd. In order to use the perturbation method de-
scribed above we apply a gauge transformation,

f̂ = 
 s + i�̂zb
�s2 + b2��

ŵ , �27�

so that the wave function ŵ satisfies the following equation:

�− i�̂z
�2k�

m

�

�s
+ �̂xGR

��� − �̂yGI
��� + �d�ŵ = �ŵ . �28�

Here

�d = −
�2k�

m

�b

s2 + b2 , �29�

is the Doppler shift, and

GR
��� = DM��s2 + b2�Re�
 s + ib

�s2 + b2�M−2�� ,

GI
��� = DM��s2 + b2�Im�
 s + ib

�s2 + b2�M−2�� , �30�

are the real and imaginary parts of the off-diagonal potential,
correspondingly. One can see that choosing M −2� to be an
odd positive integer we can change the parity of the poten-
tials in the Hamiltonian so that GR

����s� is an odd function.
Comparing Eqs. �25� and �28� we observe that the above
gauge transformation also produces a Doppler shift of the
energy levels. In principle, both the Doppler shift term and
the term �̂yGI

��� are not small and can be of the order of �0 if
the impact parameter is rather large: b	�. Thus, strictly
speaking we can consider the expression �26� with GR re-
placed by GR

����s� as a zero-order approximation and use the
perturbation technique discussed above only provided that
the energy corrections arising from the terms �̂yGI

��� and �d
almost compensate each other. For the anomalous branches,
which cross the Fermi level at certain impact parameters
−� j /k�, the perturbation method should be adequate in the
vicinity of these points. Changing � in the interval 0��
�M /2, we get a set of possible odd M −2� values providing
us a set of different zero-order approximations—which allow
us to obtain the spectrum as a function of b. Surprisingly, we
shall see below that this method can describe the spectrum
behavior even beyond its validity domain, i.e., when the en-
ergy is comparable to ��0.

It is convenient to parametrize the wave functions as

ŵ = e��s�� ei��s�/2

e−i��s�/2� . �31�

As a result, we have the following equations:

�2k�

2m

��

�s
+ GR

��� cos � + GI
��� sin � = � − �d,
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�2k�

m

��

�s
+ GR

��� sin � − GI
��� cos � = 0. �32�

Considering the localized states one should take the follow-
ing boundary conditions for odd M −2� values:

cos ����� = � �/�0, sin ����� = �1 − �2/�0
2. �33�

In order to construct the solution we note that the mutual
phase � of the electron and hole components in the zero-
order solution Eq. �26� is constant ���s�=
 /2�. Therefore,
within the perturbation theory we can linearize Eq. �32� for �
close to 
 /2 introducing �̃=
 /2−�:

��̃

�s
−

2m

�2k�

GR
����̃ =

2m

�2k�

��d + GI
��� − �� . �34�

To exclude the divergent solutions of this equation, we
should impose the integral condition describing the anoma-
lous spectral branches:

�M
��� =



0

�

��d + GI
����s��e−K�s�ds



0

�

e−K�s�ds

, �35�

where

K�s� =
2m

�2k�



0

s

GR
����t�dt . �36�

Taking D1�r�=�0r /�r2+�v
2 and �=0 for the simplest case

of a singly quantized vortex �M =1�, we get an explicit ex-
pression for the CdGM spectrum:

�1
�0� =

�0b

�b2 + �v
2

K0�2m�0
�b2 + �v

2/��2k���

K1�2m�0
�b2 + �v

2/��2k���
, �37�

where Kn is the McDonald function. To obtain the spectrum
for M =2, we need to consider the case �=1 /2 so that to
reduce the problem to the one for a unity vorticity and a
certain Doppler shift. For the case M =3 the set of anomalous
branches can be obtained by taking two � values: �=0 and
�=1. The solution �3

�0��b� gives us the branch crossing the
Fermi level at zero impact parameter, while two other
branches are described by �3

�1��b�. The typical plots of qua-
siparticle spectra for vortices with winding numbers M
=1,2 ,3 are shown in Fig. 4. Comparing the spectra �M

��� with
the branches obtained from our direct numerical analysis of
BdG Eq. �14�, one can see that our perturbation method pro-
vides a reasonable description of the low-energy spectrum
behavior. The numerical solution of the eigenvalue problem
Eq. �14� was carried out using a representation of the BdG
operator in the truncated basis of the normal-metal eigen-
functions. We solved the system of linear equations, which
correspond to the boundary conditions at the superconductor/
insulator boundary of a cylinder with a finite radius �we took
R=7��. The small oscillations of the spectrum as a function
of b �solid red lines in Fig. 4� resulted from the interference
of incident and reflected from the boundary quasiparticle
waves.13 Note, that our perturbation procedure fails to de-

scribe proper behavior of all the branches in the vicinity of
the gap value �0, e.g., for M =2 the function �2

�1/2� jumps at
b=0 from the upper branch to the lower one and, thus, we
cannot describe the part of the upper branch approaching �0
for b�0.

To obtain the spectrum as a function of discrete variable �
instead of a continuous b, we should apply the Bohr-
Sommerfeld quantization rule for the angular momentum
�see Eq. �8�� with �= �M /2�, which results from the obvious
condition that the wave function ĝ is single valued. Here �. . .�
denotes the fractional part. For the odd �even� vorticity M we
obtain �=n+1 /2 ��=n�, where n is an integer.

V. DECAY OF A MULTIQUANTUM VORTEX INTO A SET
OF SEPARATED VORTICES

In this section we consider modification of the quasipar-
ticle spectrum caused by the decay of a multiquantum vortex
into a set of separated singly quantized vortices, which oc-
curs under the decreasing magnetic field. For simplicity sake
we restrict ourselves to the case of a two-vortex system with
a certain intervortex distance a controlled by the external
magnetic field. The case a=0 corresponds to a doubly quan-
tized vortex while the limit a�� corresponds to a pair of
isolated singly quantized vortices. In this section we again
neglect the effect of normal quasiparticle scattering at the
sample boundary.

A. Quasiclassical consideration

As a first step of our analysis we choose to apply the
approximate quasiclassical procedure developed in the pre-
vious section. It is natural to expect that the validity range
for this method should be restricted to the region of rather

−1

0

1

ε/
∆ 0

−1

0

1

ε/
∆ 0

−3 −2 −1 0 1 2 3
−1

0

1

b/ξ

ε/
∆ 0

(a)

(b)

(c)

FIG. 4. �Color online� The anomalous spectral branches as func-
tions of the impact parameter b for kz=0 obtained from Eq. �35�
�blue dashed lines� for �a� M =1, �b� M =2, and �c� M =3. The
anomalous spectral branches obtained from numerical solution of
the eigenvalue problem �Eq. �14�� are shown by solid red lines. The
gap profiles are approximated as DM�r�=�0�r /�r2+�2�M with the
parameter kF�=200.

MEL’NIKOV, RYZHOV, AND SILAEV PHYSICAL REVIEW B 78, 064513 �2008�

064513-8



small distances a�ac when one can neglect the Landau-
Zener tunneling between the quasiclassical orbits ���p� de-
scribed in Sec. II. To describe the system of two singly quan-
tized vortices positioned at r= �a /2= � �a /2,0�, we fit the
gap function as follows:

��r� = �0f1
r −
a

2
� f1
r +

a

2
� = �0� f1
r −

a

2
��� f1
r +

a

2
��

�

x + iy −
a

2

�x + iy −
a

2
�

x + iy +
a

2

�x + iy +
a

2
� , �38�

where f1�r� is a normalized gap function of a singly quan-
tized vortex. It is convenient to rewrite the above expression
as a superposition of functions with two different vorticities:

��r� = �0�f2�r�e2i� + f0�r�� . �39�

Taking the simplest core model,

�f1�r�� =
r

�r2 + �v
2

, �40�

with the core size �v, we obtain

f2�r� =
x2 + y2

�
x2 + y2 + �v
2 +

a2

4
�2

− a2x2

,

f0�r� = −

a2

4

�
x2 + y2 + �v
2 +

a2

4
�2

− a2x2

.

To solve Eq. �20� with the gap function given by Eq. �39�,
we apply the gauge transformation Eq. �27� with �=1 /2.
The expression for the quasiclassical spectrum takes Eq. �35�
with

GR = �0� f2�x,y�
s

�s2 + b2
+ f0�x,y�

s cos�2�p� − b sin�2�p�
�s2 + b2 � ,

�41�

GI = �0� f2�x,y�
b

�s2 + b2
+ f0�x,y�

s sin�2�p� + b cos�2�p�
�s2 + b2 � ,

�42�

where �x ,y� variables are given by Eq. �21�.
The resulting dependencies of the impact parameter vs �p

for zero energy and different intervortex distances are shown
in Fig. 5. These calculations of the low-energy part of the
spectrum appear to be in good agreement with the two-level
model Eq. �4� and, thus, the angular dependence of the im-
pact parameter can be fitted by the expression:

b��p� =
�

�̃�kz,a�k�

��b̃2�kz,a� + 
a

2
sin �p�2

, �43�

where �̃�kz ,a�	�0 /k�� and b̃=�� / �k��� is the splitting of
quasiclassical orbits. In the limit a=0 we get the spectrum of

a doubly quantized vortex: �= �̃�kz ,0��b� b̃�kz ,0��, where

b̃�kz ,0� is of the order of � for small kz values. For large

intervortex distances the value b̃ is exponentially small: b̃
	� exp�−kFa / �k���� �see Eq. �5��. Generally, in the whole
interval of distances a the splitting of quasiclassical orbits is
defined by the overlapping of the wave functions localized in
the cores of neighboring singly quantized vortices. This over-
lapping is determined by the factor exp�−K0�s�� describing
the decay of the wave function in a singly quantized vortex
�see Ref. 6�:

K0�s� =
2m

�2k�



0

s

��t�dt . �44�

Thus, the spectrum Eq. �35� can be fitted by the one

describing the two-level system if we put b̃= b̃�kz ,0�
�exp�−K0�a /2��. Taking the vortex core model Eq. �40�, we
obtain:

b̃ = b̃�kz,0�exp�− 2
kF

k�

�v

�

� a2

4�v
2 + 1 − 1�� . �45�

Comparing this approximate expression with the orbit split-
ting calculated using the spectrum Eq. �35� �see Fig. 6 for the

−1

0

1

b/
ξ

−1

0

1

b/
ξ

0
−2

0

2

θ
p

b/
ξ

π 2π

(a)

(b)

(c)

FIG. 5. �Color online� The isoenergetic curves b��p� for a two-
vortex system. We choose here �a� �=0, kz=0, and a=0.3�; �b� a
=�; and �c� a=3�. The dashed curves correspond to the isoenergetic
lines for two noninteracting singly quantized vortices. The gap is
approximated by Eqs. �38� and �40� with �v=�.

ELECTRONIC STRUCTURE AND HEAT TRANSPORT OF… PHYSICAL REVIEW B 78, 064513 �2008�

064513-9



particular case kz=0�, we can find appropriate b̃�kz ,0� values.
To find the quantized energy levels, we can use the Bohr-

Sommerfeld quantization rule �Eq. �8��—which takes the
form S�� ,kz�=2
�n+��, where

S��,kz� = 

0

2


���p�d�p = − k�

0

2


b��p�d�p, �46�

is the area under the isoenergetic line ��� ,kz� in the �� ,�p�
plane. Calculating this integral for the two-level model �Eq.
�43��, we obtain

S��,kz� = − 2

�

�̃
� 2k�

�a2 + 4b̃2E
 a

�a2 + 4b̃2� , �47�

where E�k�=�0

/2�1−k2 sin2 �d� is the complete elliptic in-

tegral of the second type. As a result, we find the quasipar-
ticle spectrum of a two-vortex system,

�n = �̃�− n − � �
k�

�a2 + 4b̃2



E
 a

�a2 + 4b̃2
�� .

�48�

The spectrum Eq. �48� is analogous to the spectrum of the
doubly quantized vortex Eq. �1� and is drastically different
from the CdGM spectrum. The case a=0 gives us the spec-
trum Eq. �1� of a doubly–quantized vortex. Treating the op-

posite limit a� b̃ with the logarithmic accuracy, we obtain

S��,kz� = − 2

�

�̃
� 2k�a�1 + 2
 b̃

a�2

ln
a

b̃
�� , �49�

and

�n = �̃�− n �
k�a


 �1 + 2
 b̃

a�2

ln
a

b̃
��� . �50�

B. Landau-Zener tunneling between quasiclassical orbits

The above description is valid provided the intervortex
distance is rather small �a�ac� when the splitting �� be-
tween isoenergetic lines ���p� is large compared to the
quantum-mechanical uncertainty of the angular momentum
�� and the probability of the Landau-Zener tunneling be-

tween quasiclassical orbits can be neglected �see Eq. �7��. As
a next step, we proceed with a quantitative analysis of qua-
siparticle spectrum of the two-vortex system in case of the
small splitting of the isoenergetic lines in �� ,�p� plane when
the vortices are well separated so that a�ac. In order to
calculate the quasiparticle spectrum taking into account the
influence of Landau-Zener tunneling, we should go beyond
the quasiclassical consideration of the angular precession of
quasiparticle trajectories. It means that we cannot neglect the
noncommutativity of canonical variables: ��̂ ,�p�=−i, where
�p is the trajectory orientation angle and �̂=−i� /��p is the
angular momentum operator. Keeping in mind the symmetry
of the gap function in a two-vortex system, we can reduce
the problem to the one describing a single vortex with an
additional boundary condition imposed on the wave function
at the plane x=0 positioned between vortices. Indeed, the
gap function distribution corresponding to the two-vortex
system possesses the following symmetry: ��x ,y�
=���−x ,y�. As a result, for the eigenfunctions we obtain

�̂�x,y� = ei��̂��− x,y� , �51�

where � is a constant phase. The spectrum does not depend

on � since for any eigenfunction �̂ satisfying Eq. �51� we

can introduce a new function �̂1=�̂e−i�/2, which corre-
sponds to the same energy level and has the following sym-

metry: �̂1�x ,y�=�̂1
��−x ,y�. Therefore we can choose �=0

and obtain the boundary conditions at the plane x=0:

�̂ = �̂�;
��̂

�x
= −

��̂�

�x
. �52�

For the sake of simplicity we neglect the anisotropy of the
gap function around the vortex positioned in the half space
x�0. Nevertheless the solution cannot be characterized by a
definite angular momentum because of the above boundary
condition responsible for interaction of different angular har-
monics. Thus, following Ref. 14 we introduce the angular
momentum expansion for the solution:

�̂�s,�p� = �
�

ei��p+i�̂z�p/2ĝ��s� , �53�

where �=n+1 /2 and n is an integer. The function ĝ� satis-
fies the Andreev Eq. �20� along the quasiclassical trajectory
with b=−� /k�. For small impact parameters b�� Eq. �20�
can be solved analytically, yielding a general expression for
the function ĝ��s� in the following form:

ĝ��s� = c�Ĝ1��s� + d�Ĝ2��s� ,

where c� and d� are arbitrary constants. We choose the fun-
damental solutions so that G1��−��=0 while G2��+��=0
�see Ref. 14�:

Ĝ1� = �e−�K0�s��/2 − i
�

2
�sgn s + 1��̂ze

�K0�s��/2� ̂ ,

FIG. 6. �Color online� Splitting of quasiclassical orbits b̃ ob-
tained from Eq. �45� �solid line� and found from the spectrum of a
two-vortex system Eq. �35� �circles� for kz=0. The gap profile is
approximated by Eq. �39� with �v=�.
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Ĝ2� = �e−�K0�s��/2 − i
�

2
�sgn s − 1��̂ze

�K0�s��/2� ̂ .

Here  ̂= �exp�i
 /4� , exp�−i
 /4��,

���� =
!

�0
����� − �� , �54�

! =
2kF

k��



0

�

e−K0�s�ds . �55�

Here the CdGM spectrum is taken as a linear function of ���
for small ��k��v: ����=−��, with interlevel spacing

� =
1

!

2kF

k�
2 �



0

� ��s�
s

e−K0�s�ds .

It is convenient to introduce the angle dependent functions:

C��p� = �
�

ei��pc�, D��p� = �
�

ei���p+
�d�.

These functions appear to be nonzero only in the angular
interval −
 /2��p�
 /2 because of the decay of the wave

function �̂�x ,y� in the left half space far from the vortex. At
the boundaries of this angular interval we should impose the
conditions,

C��
/2� = � D�"
/2� , �56�

which result from the continuity of the wave function
��s ,�p�.

Within the large-angle domain ��p��� /a the wave func-

tion �̂�s ,�p� can be found using a tight-binding approxima-
tion as a sum of two single vortex solutions localized on
vortices at r= � �a /2,0� �see Ref. 7�. Comparing the tight-
binding solution with Eq. �53�, we obtain that
�����ei�p�c�=0 and �����ei��p+
��d�=0, or

C��p�,D��p − 
� 	 e−i��p/�. �57�

The deviations of angular functions C��p� and D��p� from
Eq. �57� due to the intervortex quasiparticle tunneling occur
in the narrow angular domain ��p��� /a. Within this domain
we apply the stationary phase method to handle the integral
in Eq. �18�. For a given value of angular momentum �
the stationary phase points are given by sin��p−��
=� / �k�R����, where R���=a / �2 cos �� corresponds to the
line x=0 in the polar coordinate system with the origin in the
vortex center. Assuming ����k�a and ����
, we obtain the
stationary phase points: �p1��+2� / �k�a� and �p2=
+�
−2� / �k�a�. Then, the expression for the wave function
��r ,�� at r=R��� and ����
 reads as follows:

�̂�R���,�� = ei#

−�

�

ei�2/k�a�e−K0�a/2� − i��̂z� ̂ei��c�d�

− �̂ze
−i#


−�

�

e−i�2/k�a�e−K0�a/2�

+ i��̂z� ̂ei���+
�d�d� ,

where #=k�a�1+�2 /2� /2 and the discreteness of angular
momentum � is neglected. Then, from Eq. �52� we obtain

Im�ei#

−�

�

ei�2/k�a�e−K0�a/2� − i��̂z� ̂ei��c�d�� = 0,

�58�

which yields the following equation �see Appendix A�:

�e−K0�a/2� − i�̂z�̂� ̂C2��� = e−2i#̃�e−K0�a/2� + i�̂z�̂� ̂�C1��� ,

�59�

where #̃=k�a�1−�2 /2� /2, C2���= iC���, and C1���
=C��−��. Then, Eq. �59� can be written as follows:


i�
�

��
− ��C2��� = e−2i#̃JC1��� ,


i�
�

��
− ��C1��� = e2i#̃JC2��� , �60�

where the overlap integral is

J =
�0

!
e−K0�a/2�. �61�

Analogously, for the functions D2���= iD��� and D1���
=D��−�� we obtain


i�
�

��
− ��D2��� = e2i#̃JD1��� ,


i�
�

��
− ��D1��� = e−2i#̃JD2��� . �62�

Considering Eqs. �60� and �62� in the angular domain
�� /a�� ���� �� /a�J /�0, we can neglect the rapidly oscillat-
ing right-hand side, therefore the asymptotic form of angular
functions C and D corresponds to the noninteracting vorti-
ces:

C = �C1,C2� = e−i��/��c̃1, c̃2� ,

D = �D1,D2� = e−i��/��d̃1, d̃2� , �63�

where c̃1, c̃2, d̃1, and d̃2 are the arbitrary constants. Then,

solving Eqs. �60� and �62� we can find the transfer matrix X̂
matching the large-angle asymptotics:

C��th� = X̂C�− �th� ,

where X̂ is a transfer matrix and �th	� /a is a threshold angle
where we match the solutions for the large-angle and small-
angle domains. Introducing new functions,

B2��� = C2���ei#̃−i��/�, B1��� = C1���e−i#̃−i��/�,

we obtain the following equations:


i
�

� �̃
+ �̃�B1 = pB2,
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i
�

� �̃
− �̃�B2 = pB1, �64�

where

p =
J

��k�a/2
, �65�

and �̃=��k�a /2. This equations coincide with equations ob-
tained in Ref. 7. The problem described by the Eq. �64� is
equivalent to the one describing the interband tunneling18 or
the one-dimensional motion of a Dirac particle in a uniform
electric field and the solution can be written in terms of the
parabolic cylinder functions �see Appendix B�, yielding the
transfer matrix,

X̂ = e−
p2/2Î + i��̂y Re $ + �̂x Im $� . �66�

Here Î is the unity matrix,

$ = �2 sinh�
p2/2�e−
p2/4ei�,

� = k�a + p2 ln��th
�k�a� + arg�%
1 − i

p2

2
�� +




4
,

�67�

and % is the gamma function. Analogously, for the functions
D��� we find,

D��th� = �̂xX̂�̂xD�− �th� .

Matching the wave function in different angular domains and
using the boundary conditions Eq. �56�, we obtain the spec-
trum,

cos�
�/�� = � e−
p2/4�2 sinh�
p2/2�sin � . �68�

Within the present theory we cannot determine the threshold
angle �th precisely. However, since the dependence of � on
�th is logarithmic, the �th-dependent term in Eq. �67� can be
considered as an additional constant phase of the oscillations
of the energy levels. The spectrum of two vortices calculated
using Eq. �68� for small �a�ac� and large �a�ac� intervor-
tex distance is shown in Fig. 7. One can see that the trans-
formation of the spectrum ��kz� occurs according to the sce-
nario suggested above: as we decrease the distance a below
ac the crossover to the spectrum of the doubly quantized
vortex starts in the region of small kz values defined by the

condition p�1. For p�1 we get the CdGM spectrum with a
small oscillatory correction:

� � ��n +
1

2
" �− 1�n�p/�
�sin
k�a +




4
�� . �69�

The minigap �min= �1−2p /�
��0 /2 vanishes for a=ac.
For the large values p�1 Eq. �68� yields the spectrum in

the form:

� = ��n �
k�a + p2 ln��th

�k�a/p2�



� . �70�

Here we have used the asymptotic formula for the argu-
ment of gamma function at p�1: arg�%�1− ip2 /2��
�−�p2 /2��ln�p2 /2�−1�. This result can be formulated as the
Bohr-Sommerfeld quantization rule S�� ,kz�=2
n with

S��,kz� = 2

�

�
� �2k�a + 2p2 ln
�th�k�a

�p�2
�� . �71�

This result coincides with formula �49� obtained by the
evaluation of the Bohr-Sommerfeld integral at quasiclassical
orbits ���p� such as the ones shown in Fig. 2�b�.

VI. BOUNDARY EFFECTS: VORTEX NEAR
THE SURFACE

Now we proceed with a quantitative analysis of the effect
of normal reflection of quasiparticles at the boundary. We
consider a vortex near a smooth surface approximated by a
parabolic cylinder �see Sec. II B�. Considering the quasiclas-
sical trajectories, which are rather far from being parallel to
the system optical axis, we find that either incident or re-
flected trajectories appears to pass far from the vortex core.
The quasiclassical spectrum for this case is the same as for a
single vortex:

��b,�p,kz� = − �k��b − d sin �p� . �72�

This spectrum should be strongly disturbed for trajectories
passing close to the optical axis when both the incident and
reflected trajectories pass through the vortex core. In this
case the trajectory orientation angles should be taken in the
domains ��p��� /d or �
−�p��� /d, and the impact param-
eters defined relative to the point with coordinates r=d and
�=0 �see Sec. II B for notations� should be rather small:
�b��d. Solving Eq. �20� along the incident and reflected tra-
jectories and matching the solutions to meet the zero bound-
ary condition for the wave function at the surface, we obtain
the quasiclassical spectrum for �b��d and ��p��1;

��b,�p,kz� = −
�k���1 + h�b + 2�pd�

2

����k��2�1 − h�2b2

4
+ J2. �73�

This expression for the quasiclassical spectrum can also be
applied for the angular interval ��p−
��1 provided that we
replace the angle �p→
−�p.

Equations �72� and �73� allow us to determine the form of
isoenergetic lines ���p�=−k�b��p�. Generally, one can dis-
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FIG. 7. �Color online� The quasiparticle spectrum of two vorti-
ces calculated using the Eq. �68� for �a� a=5� and �b� a=3.5�. The
CdGM spectrum is shown by the dashed lines. The vortex core
profile for a single vortex is approximated by Eq. �40� with �v=�
and kF�=200.
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tinguish two types of the isoenergetic lines behavior near the
points �p=
n according to the sign of the parameter h
=−�1+d /F�. If h�0 �i.e., if F�0 or F�0 and d� �F�� there
appears a prohibited angular domain with the width ��p

= p̃ /��&� �Fig. 8�a��, where

p̃ =
J

���h&�
,

& = k�d
F + d/2
F + d

. �74�

On the other hand, for h�0 �F�0 and d� �F�� there appears
a gap between isoenergetic lines and the prohibited angular
domain disappears �Fig. 8�b��.

Solid curves in Fig. 8 correspond to the trajectories,
which always pass through the vortex core. The reflection of
trajectories at the boundary determines the mapping of a
solid curve on the dashed curve. To determine the spectrum,
we should apply the Bohr-Sommerfeld quantization rule to
the closed path in �� ,�p� space corresponding to the preces-
sion of the trajectory around the vortex core. Let us study the
formation of such closed path. We start from the consider-
ation of the trajectory on the solid line, precessing along the
orbit in the direction showed by the arrow in Fig. 8. Starting
from the point D the trajectory precesses along the solid
curve to point A, while the trajectory on the dashed curve
moves from point B toward point C. As the incident trajec-
tory goes from point A on the solid curve to point B on the
dashed curve, the corresponding reflected trajectory goes
from point C on the dashed curve to point D on the solid
curve. Thus, the trajectory is reflected from the boundary and
appears at point D again. Therefore the quasiclassical orbit in
Fig. 8 forms a closed path since the quasiparticle states in
points A and D are identical. Now we can apply the Bohr-
Sommerfeld quantization rule for the closed orbits in Fig. 8:
S�� ,kz�=2
n, where n is an integer and S�� ,kz� is the area
under the solid curves ���p� in Fig. 8, taken in the angle
domains 0��p�
 and 
��p�2
. Evaluating the integral,
we obtain

S��,kz� = − 

�

�s
� �2k�d + sgn�h�p̃2 ln
�th��&�

p̃2�� ,

�75�

where the interlevel spacing is

�s = ��1 + sgn�h�
1


�th

p̃2

k�d
�−1

. �76�

The threshold angle �th is of the order of � / �2d�.
By increasing the distance from the vortex to the surface,

the splitting of the isoenergetic lines tends to be zero. Ac-
cording to the arguments presented in Sec. II the probability
of the tunneling between different quasiclassical orbits
can be estimated as follows �see Eq. �13��: W
	exp�−2
���p /��p�2�, where ��p= p̃ /��&� and ��p

	1 /��&�. When the splitting is so small that W	1 �if p̃
�1�, the above consideration becomes insufficient and we
should take into account the Landau-Zener transitions be-
tween the quasiclassical orbits.

To study this limit, we employ the approach developed in
Sec. V B. The wave functions should vanish at the sample
surface,



0

2


eik�R���cos��p−���̂�R���cos��p − ��,�p�d�p = 0. �77�

Using the same technique as in Sec. V B, we obtain


i�
�

��
− ��C1��� = ei&�2−2ik�d J

�h
C2��� ,


i�
�

��
−

�

h
�C2��� = e−i&�2+2ik�d J

�h
C1��� , �78�

where C1���=C��� and C2���= iD�� /h�. The boundary con-
ditions for C1,2��� are:

iC2�h
/2� = C1�− 
/2� ,

iC1�
/2� = C2�− h
/2� . �79�

It is important to notice that Eq. �78� is valid until k�d�h�
�1. Since the case h=0 correspond to the vortex positioned
at the focal point of a concave surface, the above condition
means that the vortex distance from the focal point is much
larger than the atomic scale. In case when the vortex is situ-
ated at the center of the surface curvature �d=−2F, h=1, and
&=0� Eq. �78� appears to be very similar to Eq. �15� of Ref.
14 obtained for a vortex at the center of a superconducting
disk. The only difference is caused by the absence of the
quasiparticle scattering at the opposite end of the trajectory
since we assume the half-infinite superconducting sample.
Hereafter considering the concave surface we focus on the
case when the vortex is shifted from the curvature center
toward the boundary at the distance exceeding the atomic
length scale: �&��1. Then, at large angles ��J / ����h�&� the
rapidly oscillating right-hand side of Eq. �78� can be ne-
glected, and we obtain the solution corresponding to the case
of a single vortex in a bulk superconductor;

FIG. 8. The schematic plot of isoenergetic lines ���p� corre-
sponding to the energy �=0 for a vortex near the parabolic bound-
ary positioned at d� �F�: �a� F�0 and h�0; �b� F�0,h�0. The
solid lines correspond to the trajectories passing close to the vortex
core. The dashed lines represent the mapping of solid lines due to
the normal reflection of trajectories at the boundary.
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C = �C1,C2� = �a1e−i��/�,a2e−i��/�h� , �80�

where a1 and a2 are the arbitrary constants. In order to obtain

the transfer matrix X̂ in the equation C��th�= X̂C�−�th� we
need to consider the domain of small angles. Introducing
new functions,

B1��� = C1���eik�de−i&�2/2−i�1�/�,

B2��� = − sgn�&�C2���e−ik�dei&�2/2−i�1�/�,

where �1=��h+1� / �2h�, and a new coordinate �̃=�−&��
+�0� with �0=��h−1� / �2&h��, we obtain the system of

equations for B1��̃� and B2��̃�. This system coincides with
Eq. �64� although for h�0 the coordinate x is imaginary and
Eq. �64� should be solved along the imaginary axis. Using
the solution of Eq. �64� �see Appendix B�, we obtain the
transfer matrix for h�0;

X̂ = e−
p̃2/2Î − i��̂x Im $1 + �̂y Re $1� , �81�

where Î is the unity matrix,

$1 = �2 sinh�
p̃2/2�e−
p̃2/4ei�1,

and �1=2k�d+ p̃2 ln��̃��+arg�%�1− ip̃2 /2��+
 /4. Analo-
gously, for h�0 we get

X̂ = e
p̃2/2Î − ��̂y Re $2 + �̂x Im $2� , �82�

where

$2 = �2 sinh�
p̃2/2�e
p̃2/4ei�2,

and �2=2k�d− p̃2 ln��̃��−arg�%�1− ip̃2 /2��+
 /4. We denote

here �̃�=��&���th+�0�.
The quasiparticle spectrum is obtained by matching the

solutions in different angular domains using the transfer ma-
trices Eqs. �81� and �82� and imposing the boundary condi-
tions �Eq. �79��;

cos

�

�
� = − sgn�h��2 sinh

p̃2

2
�e−
p̃2/4 � sin � ,

�83�

where

� = 2k�d + sgn�h�� p̃2 ln���&���th + �0��

+ arg�%
1 −
ip̃2

2
�� +




4
� . �84�

The energy � enters both the left-hand and right-hand sides
�via �0=��h−1� / �2&h��� of Eq. �83�. For small energy ����
��0� we have �th��0, and the logarithm in Eq. �84� can be
expanded as follows: ln���th+�0���&��� ln��th

��&��−�0 /�th.
The Landau-Zener transitions between quasiclassical orbits
are important for p̃�1 and, therefore, in this limit the energy
dependent term in � can always be neglected: p̃2�0 /�th�1.
In the opposite limit the probability of Landau-Zener transi-
tions vanishes and Eq. �83� yields the spectrum in the form:

� = ��2n �
2k�d + sgn�h�p̃2 ln��th

��&�/p̃2�



� . �85�

Here n is an integer, and we have used the asymptotic
formula for the argument of gamma function at p̃�1:
arg�%�1− ip̃2 /2���−�p̃2 /2��ln�p̃2 /2�−1�. This result coin-
cides with the spectrum obtained from the Bohr-Sommerfeld
quantization rule S�� ,kz�=2
n, where S�� ,kz� is given by
Eq. �75�. The general scenario of spectrum transformation
given by Eq. �83� is shown in Fig. 9.

Comparing Figs. 7 and 9 one can see that the spectrum of
a vortex approaching the surface is analogous to the spec-
trum of a two-vortex system where the part of the energy
branches �corresponding to the upper or lower sign in Eq.
�68�� is omitted. To clarify this result we note that the spec-
trum transformation in these two situations is brought about
by the coupling of trajectories with opposite momentum di-
rections although the origin of coupling is different. It is
caused by the normal reflection from the boundary when
vortex is situated near the sample surface. For two-vortex or
vortex-antivortex systems the coupling occurs due to the in-
tervortex tunneling and the precession of trajectories around
the different vortex cores. As we have noticed above in the
special case of a vortex near a flat boundary, the spectrum
exactly coincides with the spectrum of a vortex-antivortex
system if we omit the energy levels corresponding to the

even wave functions satisfying ��̂�0,y� /�x=0.

VII. DENSITY OF STATES

Using the results of the analysis of quasiparticle spectrum
transformation under the magnetic-field change, we study the
corresponding DOS modification. The calculation of DOS
can be done analytically in the quasiclassical limit—i.e.,
when the energy can be written as a function of the classical
impact parameter b=−� /k�, the trajectory orientation angle
�p and the momentum projection kz: �=��� /k� ,�p ,kz�.
Solving this equation for b, we find a set of isoenergetic
curves �i��p ,� ,kz�. Hereafter we focus on the consideration
of DOS contribution coming from a single isoenergetic curve
implying that the summation over the index i enumerating
different curves should be done.

For each isoenergetic curve the set of energy bands �n�kz�
can be found from the Bohr-Sommerfeld quantization rule,
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FIG. 9. �Color online� The quasiparticle spectrum for the vortex
near the flat surface for �a� d=2.5� and �b� d=1.75�. The CdGM
spectrum is shown by the dashed lines. The vortex core profile for a
single vortex is approximated by Eq. �40� with �v=� and kF�
=200.
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S��n,kz� = 2
n , �86�

where S�� ,kz� is the area under the curve ���p ,� ,kz�. The
density of states �per unit length and per spin projection� is
then given by a standard expression,

'��� = �
n



−kF

+kF dkz

2

��� − �n�kz�� =

1



�

n
� ��n�kz = qn����

�kz
�−1

,

�87�

where the energy spectra �n�kz� are the even functions of
momentum due to the symmetry of the BdG equations with
respect to the z-axis inversion and qn��� is a set of positive
momenta satisfying the equation �n�qn�=�. We also assume
here that �S�� ,kz�� is a monotonic function of kz�0 reaching
the maximal value at kz=0. This condition guarantees that
we get a single positive qn root for each energy branch. Such
assumption appears to be justified for particular spectrum
examples considered above.

Considering the differential of the function S�� ,kz� for a
fixed n index, we find a simple identity,

��n�kz�
�kz

= −
�S/�kz

�S/��
,

which allows us to evaluate the derivatives in Eq. �87�. As a
first step we neglect the discreteness of the energy spectrum
and replace the sum over n in Eq. �87� by the corresponding
integral. Taking a fixed energy in Eq. �86�, one can transform
the differential dn as follows:

dn =
1

2


�S

�kz
dkz.

Finally the expression for DOS reads

'��� =
1

4
2

−kF

kF � �S

��
�dkz. �88�

Taking the spectrum of a singly quantized vortex as an ex-
ample, we put �=−� /� and obtain, �S����=2
� /� and

'��� = '0 =
1

2




−kF

kF dkz

�
=

kF

4�0
. �89�

For a doubly quantized vortex with the spectrum �Eq. �1��
and �1,2=−� /����, we get '���=kF / �2�0�=2'0.

Now we proceed with the calculation of DOS for a two-
vortex system and for a vortex near the boundary. For the
two-vortex system the quasiclassical expression for the area
under isoenergetic lines has the form Eq. �49�. Therefore,
��S1,2 /���=2
 /� and does not depend on the distance be-
tween vortices. Thus, the DOS of the two-vortex system is a
conserved quantity, which does not depend on the intervortex
distance: '���=kF /2�0=2'0.

Considering the DOS for a vortex near the boundary of
superconductor, we use Eq. �75� and obtain ��S1,2 /���
=2
 /�s. The important point is that �s depends now on the
distance from the vortex to the boundary and on the charac-
teristics of the surface �i.e., the focal distance F�. The result-
ing low-energy DOS can be written as follows: '='0
+sgn�h��', where

�'/'0 =
2�0


2�thkFd



−kF

kF p̃2

�k�

dkz, �90�

where

p̃ =
�0

�

e−K0�d�

!�k�d�1 + d/2F�
.

The ratio �' /'0 is a monotonically decreasing function of the
vortex distance to the surface d and at d��. It can be evalu-
ated as follows: �' /'0	�� /d�exp�−4d /��. Therefore, if h
�0 �h�0�, then the DOS is reduced �increased� as the vor-
tex approaches the surface. If the vortex is very close to the
surface �d� �F��, then h is always negative and therefore the
DOS is suppressed. For example, at d=� the correction of
DOS �' is of the order of 0.1'0. This effect can be inter-
preted as the disappearance of the anomalous spectrum
branch occurring as the vortex approaches the boundary and
finally leaves the sample. The DOS reduction is the direct
consequence of the increase in interlevel distance �s �Eq.
�76�� in the vortex spectrum due to the appearance of the
prohibited domain of trajectory orientation angles as shown
in Fig. 8�a�. The decrease in the distance d should result in
the shrinking of the quasiclassical orbits in �� ,�p� space and
the DOS suppression until the complete disappearance of the
anomalous spectrum branch at the moment of vortex exit.

If the spectrum discreteness cannot be neglected, the
above quasiclassical calculation of DOS becomes insuffi-
cient. In this case, the rigorous calculation of DOS on the
basis of the expression for the quantized spectrum of the
two-vortex system �Eq. �68�� and the vortex near the bound-
ary �Eq. �83�� can be done numerically. The results are
shown in Figs. 10 and 11. To avoid the singularities, the DOS
is averaged over the small energy interval 0.1�0. In real ex-
perimental conditions such smearing of DOS can be caused,
e.g., by finite temperature or scattering effects.

The DOS of the two-vortex system �Fig. 10� in the case
a�ac consists of two sets of small peaks shifted by the value
�0�2�− �2��� with background level of 2'0 �Fig. 10�b��.
Here square brackets denote the integer part and � is given
by Eq. �67�. These peaks are van Hove singularities corre-
sponding to the extrema of the spectrum branches at kz=0
�Fig. 7�b��. As the distance between vortices increases, the
DOS tends to the doubled value of CdGM DOS of the iso-
lated vortex, shown by the dashed lines �Fig. 10�a��.
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FIG. 10. �Color online� The density of states for a two-vortex
system for �a� a=5� and �b� a=3.5�. The doubled CdGM DOS is
shown by the dashed lines. The vortex core profile for a single
vortex is approximated by Eq. �40� with �v=� and kF�=200.
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The expression for the spectrum �Eq. �83�� of a vortex
near the boundary is analogous to the spectrum of the two-
vortex system where part of the branches corresponding to
the upper or lower sign in Eq. �68� is omitted. The function
'��� for the vortex near the flat boundary is shown in Fig. 11.
One can see that similarly to the case of a vortex pair the
DOS reveals two sets of peaks, but the energy scale of DOS
oscillations is now larger than �0.

VIII. HEAT CONDUCTANCE

In this section we calculate the heat conductance of vortex
states in a mesoscopic superconductor focusing on the low-
temperature limit T��0 when the transport is dominated by
the contribution of subgap levels. We consider the ballistic
regime and neglect the scattering effects on the boundaries
between superconductor and normal-metal leads. The ex-
pression for the thermal conductance reads14

	 =
1

4
�T2�
n



0

kF �n
2

cosh2��n/2T�
� ��n

�kz
�dkz. �91�

Let us introduce the function N��� giving the number of
energy branches crossing a certain energy level �;

N��� = �
n



0

kF

dkz��� − �n�kz��� ��n

�kz
� . �92�

Then the expression �91� can be rewritten as follows:

	 =
1

4
�T2

0

� �2N���
cosh2��/2T�

d� . �93�

In the temperature interval �0�T��0 the discreteness of
the spectrum can be neglected. In order to evaluate the num-
ber of states N��� in Eq. �93�, we use the quasiclassical
theory assuming that the probability of Landau-Zener tunnel-
ing between different quasiclassical orbits is small. Gener-
ally, the quasiclassical theory is valid only within the mo-
mentum interval kz�kz

�, otherwise the interband Landau-
Zener transitions cannot be neglected. As a result, in Eq. �92�
we should take the upper limit of integration kz

� instead of kF.
The value of the threshold momentum k�

� can be estimated
from the condition that the Landau-Zener tunneling probabil-
ity W �see Eq. �7�� is equal to a certain threshold value Wth
�1. Using the Bohr-Sommerfeld quantization rule �Eq.
�86��, we find:

N��� = �

0

kz
� dS��,kz�

dkz

dkz

2

� =

�S��,0� − S��,kz
���

2

. �94�

To evaluate the integral �Eq. �93��, we consider the Taylor
expansion �S�� ,0�−S�� ,kz

���=�n=0
� S�n��n /n!, where

S�n� = � dn

d�n �S��,0� − S��,kz
����

�=0
.

As a result, we find the expansion of the heat conductance in
power series of T,

	 =
T

4
�
�
n=0

�

AnS�n�Tn, �95�

where An are expressed in terms of the Rihmann function
��n�:

An =
2�n + 2��n + 1�



�1 − 2−�n+1����n + 2� .

Consequently the effective number of conducting modes
Nv=	 /	0 is

Nv =
3

4
2 �
n=0

�

AnS�n�Tn. �96�

For a singly quantized vortex we get N���=� /�0 and

Nv =
27��3�

2
2

T

�0
,

which coincides with the expression obtained in Ref. 14. For
a doubly quantized vortex N���=2��, where ��	kF� and
Nv=��. Now we proceed with the calculation of the heat
conductance for the two-vortex system and for the vortex
near the sample surface.

A. Two-vortex system

The results of our numerical calculation of the number of
conducting modes as a function of temperature on the basis
of Eq. �91� with the spectrum Eq. �68� are shown in Fig. 12.
The suppression of Nv at T��0 is caused by the minigap in
the spectrum. One can see that at T��0 the function Nv�T�
grows linearly with T. Extrapolating this linear dependence
to T=0, we find the residual number of modes N0—which is
plotted by the solid curve in Fig. 13 as a function of the
intervortex distance a.

The quasiclassical procedure suggested in the beginning
of this section allows us to obtain a good analytical approxi-
mation describing the behavior of the residual number of
modes for a�ac. To get such approximation, we evaluate the
temperature-independent term N0=N�0� /2 in expansion �96�,
which dominates for rather small intervortex distances a
�ac. We use expression �94� for the number of states N���
where the area confined by the closed orbits in �� ,�p� space
is given by Eq. �47�. The resulting number of conducting
modes vs intervortex distance is shown in Fig. 13 by the
dashed curve. Here we choose the threshold probability
Wth=0.54 to obtain a reasonable fit to the numerical results
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FIG. 11. �Color online� The density of states for a vortex near
the flat surface for �a� d=2.5� and �b� d=1.75�. The CdGM DOS is
shown by the dashed lines. The vortex core profile for a single
vortex is approximated by Eq. �40� with �v=� and kF�=200.
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�solid curve� at a	2�. The critical distance ac is defined by
N0�ac�=0. The chosen value of the threshold probability cor-
responds to the critical intervortex distance ac�4.5�.

For well separated vortices, i.e., when a�2�, the splitting
of energy branches is small. One can use approximate ex-
pression �71� for the area S�� ,kz� to obtain

N0 =
a



�kF − k�

� � +
p2



ln��th

�kFa/p2� , �97�

where

k�
� = kF

��a/�v�2 + 4 − 2
��ac/�v�2 + 4 − 2

. �98�

This expression coincides with the estimate �Eq. �10�� in the
limit a��v.

B. Vortex near the sample boundary

The calculation of the number of conducting modes for
the vortex near the boundary can be carried out similarly to
the above analysis of the two-vortex system. We restrict our-

selves to the case when the vortex is situated not very close
to the boundary: d��, when we can neglect the distortion of
vortex core profile due to boundary effects. Taking for ex-
ample a flat surface �h=−1 and F=��, we use Eqs. �83� and
�91� and calculate the residual number of conducting modes
N0 obtained from the extrapolation of the linear parts of
Nv�T� dependencies to T=0. In Fig. 14 we plot the resulting
dependence N0�d� �solid curve�.

The estimate of the residual number of conducting modes
within the quasiclassical theory yields the following result:

N0 =
d



�kF − k�

� � + sgn�	�
p̃2

2

ln��th

��&�/p̃2� , �99�

where

k�
� = kF

��d/�v�2 + 1 − 1
��dc/�v�2 + 1 − 1

, �100�

for the particular vortex core model Eq. �40�. Taking dc
�2.25�, we plot approximate expression �99� for N0�d� in
Fig. 14 �dashed curve�.

One can see that the normal reflection at the surface leads
to the essential increase in the residual number of conducting
modes with the decrease in the distance d. This effect is a
consequence of the minigap suppression. The nonmonotonic
behavior of N0�d� at the distances d	� has the same origin
as the decrease in the zero energy DOS, which occurs at
these distances. The residual number of conducting modes
N0�d� is defined by the number of states at the zero energy
level N�0� �see Eq. �95��, which is proportional to the area
enclosed by the quasiclassical orbits in �� ,�p� space. There-
fore the shrinking of closed quasiclassical orbits at d	� re-
sults in the decrease in the N0�d� value. At small distances to
the surface d��v our approach does not work. However it is
natural to expect further suppression of the number of sub-
gap conducting modes down to zero, which accompanies the
vortex exit from the sample.

C. Magnetic-field dependence of thermal conductance

To illustrate our analysis of the heat transport in the vor-
tex state, it is useful to consider the magnetic-field depen-
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T/ω
0
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v

FIG. 12. �Color online� Temperature dependence of the number
of conducting modes Nv for a two-vortex system. Curves are plotted
for a=2� to a=5� with the step 0.5� �from top to bottom�. The
vortex core profile for a single vortex is approximated by Eq. �40�
with �v=� and kF�=200.
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FIG. 13. �Color online� Residual number of modes as a function
of the intervortex distance. Solid line shows the result of the exact
calculation based on Eq. �91�, while dashed line is obtained from
the analytical approximate expressions �47� and �96�.

0 1 2 3
0

15

30

45

d/ξ

N
0

FIG. 14. �Color online� Residual number of modes N0 as a func-
tion of the distance to the surface d. Solid line shows the result of
the exact calculation based on Eq. �91�, while dashed line is ob-
tained from the analytical formula �99�. The vortex core profile for
a single vortex is approximated by Eq. �40� with �v=� and kF�
=200.
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dence of the heat conductance caused by the transformation
of the vortex structure. For this purpose we plot the sche-
matic dependencies of the sample magnetization and the ef-
fective number of modes at a certain finite temperature T
��0 as shown in Fig. 15. Different branches of the magne-
tization curve shown in Fig. 15�a� correspond to the different
number of vortices in the superconducting sample. Starting
from small magnetic fields H�Hc2, the sample is in the
Meissner state—i.e., the number of vortices is zero. The
number of conducting modes Nv=	 /	0 �see Fig. 15�b�� is
determined by quasiparticle states with energies above the
superconducting gap �0 and therefore is exponentially small
Nv=N�0�	�kFL�2e−�0/T provided T�Tc, where L is a charac-
teristic transverse size of the sample. In increasing magnetic
field the superconducting gap is suppressed leading to a
slightly growing Nv. When the magnetic field becomes large
enough to introduce a vortex into the sample, the number of
conducting modes jumps to the value N�1�	T /�0 simulta-
neously with the vortex entry. This increase in Nv is caused
by the appearance of subgap quasiparticle states localized
within the vortex core.14 The next jump in the number of
conducting modes occurs together with the second vortex
entry. If the sample geometry favors the formation of a giant
doubly quantized vortex, the number of conducting modes
rises up to the value NMQ

�2� 	�kF��. At the interval of magnetic
fields where the giant vortex is stable, Nv is almost constant.
The decay of the giant vortex into singly quantized vortices
in decreasing magnetic field is accompanied by the decrease
in Nv up to the value Nmin

�2� �2N�1� �see Sec. V for details�.
While the distance between the vortices grows, they ap-
proach the sample surface and the number of conducting

modes increases again �as it was shown in Sec. IV�. This
increase is cut off at a certain value Nexit

�2� at the field corre-
sponding to the vortex exit.

IX. SUMMARY

To summarize, we suggest a description of a subgap qua-
siparticle spectrum in the multivortex state of a mesoscopic
superconductor. Considering multiquantum �giant� vortices,
we have obtained a general analytical expression for the qua-
siparticle spectrum—which is valid for any value of vorticity
and arbitrary vortex core model. Taking the simplest example
of the doubly quantized vortex, we have considered the evo-
lution of the anomalous spectrum branches—which accom-
panies the splitting of the doubly quantized vortex. Consid-
ering the limit of well separated vortices, we have found the
spectrum of vortex clusters bonded by the quasiparticle tun-
neling and have investigated the crossover to the Caroli–de
Gennes–Matricon spectrum of isolated vortices. We have
shown that the minigap in the quasiparticle spectrum is ab-
sent for the intervortex distances a�ac�� ln�kF��. In meso-
scopic superconductors it is necessary also to take account of
the normal reflection of quasiparticles at the sample surface.
We have shown that the spectrum of a single vortex placed
near the parabolic surface is transformed analogously to the
two-vortex system and the minigap in the spectrum is sup-
pressed when the distance from the vortex to the surface is
less than the critical value: d�dc��� /2�ln�kF��. When the
distance is of the order of the vortex core size, the interlevel
spacing in the vortex spectrum becomes larger than the
CdGM value. This effect leads to the disappearance of the
anomalous spectrum branch when the vortex approaches the
surface.

We have analyzed the quasiparticle density of states and
the heat conductance along the magnetic field, which are
determined by the anomalous branches of the quasiparticle
spectrum. At the temperatures T��0 neglecting the discrete-
ness of spectrum we have obtained a general expression for
the DOS and heat conductance through the characteristics of
the quasiclassical orbits in �� ,�p� space. Applying the gen-
eral formula to the vortex pair, we have observed a signifi-
cant decrease in the heat conductance as a function of the
growing intervortex distance. Even in the limit of the zero
intervortex distance—i.e., for a doubly quantized vortex—
the number of conducting modes Nv	kF� appears to be
much less than the value �kF��2, which determines the num-
ber of conducting modes for a normal-metal wire of the ra-
dius �. At nonzero intervortex distances and in the tempera-
ture region �0�T��0 the effective number of transport
modes is a linear function of temperature; Nv=N0+�T. The
splitting of the doubly quantized vortex is accompanied by
the decrease in the residual number of modes N0, and at
rather large intervortex distances we get the doubled heat
conductance of a single vortex; Nv	T /�0�kF�.

Also we have shown that the normal reflection at the sur-
face of the sample leads to a considerable increase in the heat
conductance along the magnetic field when the distance from
the vortex to the sample boundary becomes rather small: �
�d�dc. The exit of a vortex from the sample is accompa-

FIG. 15. �Color online� �a� Schematic plots of magnetization
and �b� effective number of modes contributing to the heat conduc-
tance in a mesoscopic sample vs applied magnetic field. Different
branches correspond to the states with different number of vortices
trapped in the sample.
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nied by the disappearance of the anomalous spectrum branch
and, therefore, both the heat conductance and the DOS are
suppressed at d��.
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APPENDIX A: DERIVATION OF EQ. (59)

At first let us prove the following formula:



−�

�

e−ik2/2+ikxF�k�dk = �2
i

−�

�

ei�x − y�2/2f�y�dy , �A1�

where f�x� is a smooth enough function defined at −��x
�� and F�k�=2
�−�

� e−ikxf�x�dx. Indeed, the integral in the
right-hand side of Eq. �A1� can be written as follows:



−�

�

ei�x − y�2/2f�y�dy =
 

−�

�

ei�x − y�2/2+ikyF�k�dkdy .

Noting that �x−y�2 /2+ky= �y+k−x�2 /2+kx−k2 /2, we inte-
grate over the y variable using the formula �−�

� eix2
dx=�
i

and obtain


 

−�

�

ei�x − y�2/2+ikyF�k�dkdy =
1

�2
i



−�

�

e−ik2/2+ikxF�k�dk .

Taking Eq. �58� in the form,

�

�

�

ei�2/k�a�e−K0�a/2� − i�̂�̂z� ̂ei��1c�d��
= e−2i#�


�

�

e−i�2/k�a�e−K0�a/2� + i�̂�̂z� ̂�e−i��1c�
� d�� ,

�A2�

we multiply it by eik�a�� − �1�2/4 and integrate over �1. Using
Eq. �A1� we can transform the above integrals as follows:


 

−�

�

eik�a�� − �1�2/4ei�2/k�aei��1c�d�d�1

=�2


i

 


−�

�

ei�k�a/4���� − �1�2−��1 − �2�2�C��2�d�1d�2

=
�2/i

k�a

C��� ,


 

−�

�

eik�a��� − �1�2/4−�2/2�e−i�2/k�ae−i��1c�
� d�

= �2
i
 

−�

�

eik�a��� − �1�2/4+��1 − �2�2/4−�1
2/2�C��2�d�1d�2

=
�2i/

k�a

eik�a�2/2C��− �� .

Making use of these expressions, the derivation of Eq. �59�
from Eq. �A2� is straightforward.

APPENDIX B: TRANSFER MATRICES

Let us consider the following system of equations:

i
�

�x
B1 + xB1 = pB2,

i
�

�x
B2 − xB2 = pB1, �B1�

where p�0 and x is a coordinate along real or imaginary
axes. We start with the case of real x. Solutions of Eqs. �B1�
can be expressed in terms of the parabolic cylinder functions
D �Ref. 19� with arbitrary constants d1 and d2:

B1 = d1Dip2/2
x�2

i
� + d2Dip2/2
− x�2

i
� ,

B2 =
p

�2i
�d1Dip2/2−1
x�2

i
� − d2Dip2/2−1
− x�2

i
�� .

�B2�

The asymptotic expressions for the obtained solutions for x
�max�1, p� are the following:

Dip2/2
x�2

i
� � eix2/2+i�p2/2�ln��2x�+
p2/8,

Dip2/2−1
x�2

i
� � 0,

Dip2/2
− x�2

i
� � eix2/2+i�p2/2�ln��2x�−3
p2/8,

Dip2/2−1
− x�2

i
� � �2


e−ix2/2−i�p2/2�ln��2x�−
p2/8

%�1 − ip2/2�
,

where % is the gamma function. Then, we find the scattering

matrix X̂1 coupling the solutions B̂= �B1 ,B2� at x�0 and x
�0;

B̂�x � 0� = X̂1B̂�x � 0� ,

in the following form:

X̂1 = e−
p2/2Î + i��̂y Re $1 + �̂x Im $1� , �B3�

where Î is the unity matrix,
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$1 = �2 sinh�
p2/2�e−
p2/4ei�1,

and �1=x2+ p2 ln��2x�+arg %�1− p2 /2�+
 /4.
Next, we consider the case of imaginary coordinate x.

Introducing a new variable y=−ix, we obtain an analytical
continuation of the solutions �Eq. �B2��:

B1 = d1Dip2/2�y�2i� + d2Dip2/2�− y�2i� ,

B2 =
p

�2i
�d1Dip2/2−1�y�2i� − d2Dip2/2−1�− y�2i�� .

The asymptotic expressions for this solutions at y
�max�1, p� have the form:

Dip2/2�y�2i� � e−iy2/2+i�p2/2�ln��2y�−
p2/8,

Dip2/2−1�y�2i� � 0,

Dip2/2�− y�2i� � e−iy2/2+i�p2/2�ln��2y�+3
p2/8,

Dip2/2−1�− y�2i� � �2

eiy2/2−i�p2/2�ln��2y�+
p2/8

%�1 − ip2/2�
,

and the transfer matrix is

X̂2 = e
p2/2Î + ��̂y Re $2 + �̂x Im $2� , �B4�

where

$2 = �2 sinh�
p2/2�e
p2/4ei�2,

and

�2 = y2 − p2 ln��2y� − arg %�1 − p2/2� + 
/4.
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